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Abstract. This paper describes an implicit approach and nonlinear solver for solution
of radiation-hydrodynamic problems in the context of supernovae and proto-neutron star
cooling. The robust approach applies Newton-Krylov methods and overcomes the difficulties
of discontinuous limiters in the discretized equations and scaling of the equations over wide
ranges of physical behavior. We discuss these difficulties, our approach for overcoming them,
and numerical results demonstrating accuracy and efficiency of the method.

1. Introduction

Due to a large disparity in time scales, a multitude of relevant physical processes, and solution
components spanning a wide range of scales, modeling the collapse of a massive stellar core to
produce either a hot proto-neutron star or a supernova explosion proves to be an inherently
challenging numerical problem. The model must describe the hydrodynamic behavior of hot,
dense matter with complex composition and must describe the flow of radiation, in the form
of neutrinos, through the matter. During the cooling phase of these processes, neutrinos carry
off most (approximately 99%) of the gravitational potential energy released by the collapse
of the star’s core, with the remaining 1% or so of the energy contributing to the observed
supernova explosion. This general scenario was confirmed through detection of neutrinos by two
independent experiments from supernova SN1987A [1, 2]. Simulations of such phenomena must
account for both the explosion and cooling phases, covering a time period of tens of seconds [3].
Thus algorithms for these simulations must allow high accuracy over long periods of time.

In such models a set of combined fluid dynamic and radiation transport equations must be
solved to describe the evolution of the system from its initial state. If explicit time integration
methods are applied for the hydrodynamic processes, time steps will be limited by the CFL
stability constraint, typically requiring steps less than 1µs [4]. Furthermore, coupling between
matter and radiation occurs on a time scale even faster than the CFL limit, resulting in significant
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stiffness in the problem. To date, no radiation-hydrodynamic simulation for evolution of a
collapsed core over the period of tens of seconds has been possible using explicit methods.
Explicit calculations [5, 6] have been limited to short (< 1s) periods of time. Long timescale
cooling calculations [3, 7] have had to assume the collapsed core is in hydrostatic equilibrium.
Since implicit methods allow high-order-accurate solutions, can be robust for stiff problems, and
are not limited by CFL stability constraints, their use is thus highly desirable for these models.

The use of implicit methods introduces its own set of challenges beyond those strictly
pertaining to the relevant physics. First, the governing equations are nonlinear and
sparse, suggesting the use of Newton-Krylov (hereafter NK) iterative methods [8]. Second,
discretizations employed to capture the behavior of hydrodynamic shocks present in the system
introduce limiters that result in discontinuities in the nonlinear system. These discontinuities
are problematic from the standpoint of the convergence theory of NK methods. A third difficulty
with using implicit methods arises from the fact that the model equations describe the evolution
of matter and radiation over a range of densities and physical length scales spanning many orders
of magnitude from the center of the collapsing core to the outer edges of the computational
domain. This wide range of values means that the discretized equations involve scaling issues
that can present difficulties for NK methods.

Another element of complexity arises due to the size of the discrete systems. Radiation
transport models of core collapse supernovae must describe the evolution of the distribution of
neutrinos across a large number of frequencies, thus adding a spectral dimension to the space-
time discretization, and increasing the size of the resulting nonlinear and linear systems that
must be solved. In multiple spatial dimensions, this problem then requires the use of massively
parallel computing resources in order for the memory and computation requirements to even be
tractable. Thus, the approach required for solution of the discrete systems must be scalable to
large parallel computing platforms.

In this work, our goal has been to develop a nonlinear solver framework employing Newton-
Krylov methods robustly on a variety of radiation-hydrodynamic discretization schemes. NK
methods are typically used for large, sparse problems through combining Newton’s method with
a scalable preconditioned Krylov method for solving the linear systems within each nonlinear
iteration [8]. We targeted NK methods for these problems due to the fast, quadratic convergence
properties of Newton’s method. NK methods have been very effective in solving large, nonlinear
systems in a number of application areas; for details we refer the reader to the review article
[9]. In order to effectively test our NK methodology on the applications of interest, we consider
the problem of cooling the collapsed core in spherical symmetry (thus creating a 2-D nonlinear
system in space and neutrino frequency).

This paper is organized as follows. In the next section, we present the implicit fluid dynamics
models we use. The third section describes our NK method, and the fourth section discusses
some software packages that provide efficient and robust implementations of NK methods. The
fifth section presents numerical results, and the last section gives some conclusions.

2. Implicit Hydrodynamics Models

While our ultimate goal is to use NK methods to solve the full set of radiation hydrodynamic
equations in an implicitly-coupled fashion, in this paper we consider only the most difficult
portion of the system from a nonlinear solver viewpoint, the nonlinear hydrodynamic equations.
We handle the nonlinear radiation transport equations through an operator-split approximation.
The use of NK methods to treat the neutrino radiation has been described elsewhere [10], and
future work will investigate a full nonlinear coupling of these two implicit systems. Our focus in
this work is to establish a robust methodology to effectively deal with the challenges of implicit
hydrodynamics in the context of proto-neutron star and supernova simulations. The implicit
approach we consider addresses both Lagrangean and Eulerian formulations of compressible



hydrodynamics with differing spatial meshes and discretization schemes.
We first consider the Langragean formulation which is applicable in the initial stellar collapse

phase of a supernova. In this phase, a comoving mass coordinate m follows the collapse over
many orders of magnitude in the radial coordinate r (which evolves in time). The Lagrangean
formulation for compressible hydrodynamics is given by [11]

Dv
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r2
− 4πr2

(
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≡ F lv, (1)
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− 4πr2ρ ≡ Glm, (4)

corresponding to conservation of momentum, the definition of velocity, conservation of energy,
and self-gravity. In (1)-(4), v is the matter velocity, ρ is the matter density, Em is the matter
energy density, and Pm is the matter pressure. The radiation pressure PR is considered an input
from the radiation solver in a standard operator-split approach. The operator D/Dt is used
to denote the Lagrangean (comoving frame) time derivative. The system of equations is closed
through an equation of state of the form

Em = Em(T, ρ) and Pm = Pm(T, ρ), (5)

in terms of the matter temperature T . The equations are spatially discretized using the
Richtmyer-Morton finite-difference method using a staggered grid and an artificial viscosity
scheme to treat shocks (see [11], p. 485). The discrete analogs of (1)-(4) for each cell form
the coupled set of sparse, nonlinear equations that must be solved to advance each time step,
as described in Section 3.1. The system is defined by the vector of unknowns and the vector
of nonlinear equations. In this Lagrangean discretization the vector of unknowns is given by

xT =
(

ρi+1/2, Ti+1/2, ri, vi

)

, i = 1, . . . , N , where integer indices denote quantities defined at cell

edges, half-integer indices denote quantities defined at cell centers, and N denotes the total
number of active cells. The vector of nonlinear equations corresponds to the discretized versions
of equations (1)-(4) within each cell. Let us denote this system of unknowns and equations as
System I, and note that the total size of the system is 4N .

In the initial phase of stellar collapse it is desirable to employ a Lagrangean hydrodynamic
scheme as the core of the star contracts from a radius of several thousand kilometers to just
a few hundred kilometers [4]. The Lagrangean scheme allows coordinates to comove with the
collapsing core. After collapse it is typically more desirable to consider an Eulerian formulation
where the coordinates are fixed in space. We consider two common Eulerian formulations,
differing in the choice of energy equation. One formulation employs a gas energy equation and
the other a total energy equation. Each of these approaches has merits and limitations. The
former approach ensures that the First Law of Thermodynamics is satisfied while the latter
ensures the conservation of total energy. In spherical symmetry the former approach is given by
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corresponding to conservation of mass, evolution of gas energy, and conservation of momentum.
These are augmented with the self-gravity equation (4), which remains unchanged from the
Lagrangean formulation.

Such a formulation has been used in the explicit ZEUS-2D code [12]. We consider the implicit
generalization of this scheme using a staggered mesh, an artificial viscosity, and a van Leer
monotonic limiter to treat shocks (see [12] for details). In this discretization the vector of

unknowns is given by xT =
(

ρi+1/2, Ti+1/2, vi,mi

)

, i = 1, . . . , N , where the mass coordinate m

evolves over time and the spatial coordinate r is held fixed. The vector of nonlinear equations
defining this system corresponds to the discretized versions of (6)-(8) and (4) within each cell.
We denote this as System II, and note that the total size of the system is again 4N .

An alternative formulation replaces (7) with an equation for conservation of total energy,
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2ρv2)
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2
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This approach is used in many finite-volume fluid dynamics methods. We consider the implicit
extension of the widely used LCPFCT discretization scheme [13], which is an extension of the
pioneering FCT scheme [14]. This approach uses a cell-centered finite-volume mesh with limiters
to maintain monotonicity and capture shocks. In this discretization the vector of unknowns is

given by xT =
(

ρi+1/2, Ti+1/2, vi+1/2,mi+1/2

)

, i = 1, . . . , N , and the vector of equations is given

by the discretized versions of (6), (8), (9) and (4) within each cell. We denote this as System
III, and note the size of the system is also 4N .

3. Integration and Solution Approach

This section overviews the implicit time integration approach, along with the fundamental
components of our NK method.

3.1. Temporal Integration with θ-scheme
We employ a two level θ-scheme for time integration. This formulation allows switching between
explicit and both first and second order implicit integration methods based on the continuous
parameter θ. For the relevant spatially I, II, or III, this scheme is

V (xn) − V (xn−1)

∆t
= θF (xn) + (1 − θ)F (xn−1), (10)

G(xn) = 0, (11)

where F (xn) represents the set of discretized time-dependent equations {(1)-(3)}, {(6)-(8)}, or
{(6), (8), (9)}, evaluated at time tn, and G(xn) represents the discretized constraint (4). We
write V (x) to denote that the time-derivatives include functional forms of the unknowns, and
the form of V is readily apparent through inspection. When θ = 0 this scheme reduces to the
forward Euler explicit method. When θ = 1 the scheme is the first order backward Euler implicit
method. When θ = 0.5 the scheme is the second order Crank-Nicholson implicit method.

3.2. Newton-Krylov Nonlinear System Solver
When advancing (10)-(11) with θ > 0, a nonlinear system of equations given by,

H (x(tn)) = 0, (12)

must be solved. Here x(tn) ∈ IR4N is the vector of unknowns approximated at time tn and H is
the vector comprised of (10) and (11).



The Newton-Krylov algorithm was first developed for use in solving discrete nonlinear systems
arising from PDEs in [15]. This method leverages the quadratic convergence of Newton’s method
with the robustness and scalability of preconditioned Krylov methods. Details of the algorithm
can be found in [9] and [8]. The basic algorithm for solution of the system H(x) = 0 is:

Start with an initial condition x0 at time t0:
For each time step n = 1, . . . , N , find xn ≈ x(tn) by Newton’s method:

1. Start with an initial Newton iterate xn(0) (typically xn(0) = xn−1)

2. For each Newton iteration j = 1, 2, . . .

a. Using a Krylov method, approximately solve for sj,

JH

(

xn(j)
)

sj = −H
(

xn(j)
)

such that
∥

∥

∥JH

(

xn(j)
)

sj + H
(

xn(j)
)∥

∥

∥ ≤ ltol.

Within each Krylov iteration perform:

i. One matrix-vector multiply with JH

(

xn(j)
)

ii. One preconditioner solve
b. Update the Newton iterate, xn(j+1) = xn(j) + λsj

c. Test for convergence to stop the iteration,
∥

∥

∥H
(

xn(j+1)
)∥

∥

∥ < htol.

Here, JH

(

xn(j)
)

∈ IR4N×4N is the Jacobian of the nonlinear function H(x) evaluated at

the previous Newton iterate xn(j), and λ ∈ (0, 1] is a line search parameter chosen to help
globalize the method [8]. Information on Krylov methods and their use with Newton’s method
can be found in [8, 16]. The Krylov methods most commonly used within an NK framework are
GMRES [17] and BiCGStab [18] as these are general to non-symmetric systems as is typical in
multi-physics applications.

As noted in the algorithm description above, Krylov methods require a matrix-vector multiply
at each iteration. In fact, there is no other requirement or use of the linear system matrix. Since
this matrix arises from the nonlinear system, instead of constructing JH(x) directly we can
approximate the action of the Jacobian on a vector with a directional difference,

JH(x)w ≈ H(x + σw) − H(x)/σ, (13)

while still preserving convergence of the overall Newton method [19]. Thus, as long as the
nonlinear function can be evaluated at each linear iteration, the Newton-Krylov solve can proceed
without analytically calculating Jacobian matrices.

Although very robust, Krylov methods can often slow or stall in their convergence. As a
result, we apply a right preconditioner, P , within Step 2.a. via the transformation

JHs = −H −→ (JHP−1)(Ps) = −H. (14)

3.3. Solver Customizations for Astrophysical Hydrodynamics
While the standard NK algorithm works in theory for sufficiently-differentiable nonlinear
problems, astrophysical hydrodynamics presents a number of challenges to these methods. We
describe the key ingredients required for application of NK algorithms to our systems.

As described in Section 2, flux limiters and artificial viscosity terms are included in the
models with the goal of increasing the stability of numerical methods in the presence of shocks.
Unfortunately, these terms are typically enabled through non-differentiable “if” statements in a
code. As such, the nonlinear functional H(x) is not in general Lipschitz continuous, as is required
for Newton convergence theory, and the equations themselves may even change between one
evaluation of H and the next. In practice, such effects may result in non-convergence of a matrix-
free Krylov linear solver, since the multiple evaluations of H in (13) may be based on different



equations, with possibly differing artificial viscosities or flux terms. To ameliorate this difficulty,
we “freeze” the choice of these algorithmic nonlinearities throughout each Newton iteration. The
resulting Krylov iteration converges without difficulty, leaving any differentiability issues to the
more forgiving globalized Newton solver, which may require at most a few additional iterations
to resolve the solution. We accomplish this “freeze” through approximating the Jacobian matrix
JH(x) directly, again using finite-differences, but now to compute the specific Jacobian entries,

[JH (x)]i,j ≈ Hi (x + σej) − Hi (x)/σ, i, j = 1, . . . , 4N. (15)

where ej corresponds to the unit vector formed with zeros in all but the jth entry, and
Hi(x) corresponds to the ith entry in the nonlinear residual vector. In addition, since the
hydrodynamics equations involve a fixed stencil size, the large majority of these entries are
zero. We exploit this feature through the use of colored finite-difference methods to perform
the Jacobian approximation (15) using only a small fixed number of evaluations of H. Through
approximating these entries, we effectively “smooth” out discontinuities present in the true
Jacobian enabling nonlinear convergence. In addition, with these precomputed Jacobian entries,
we easily construct a block-diagonal preconditioning matrix P through extracting only the
spatially-local entries that couple the variables together within a given cell.

Typically, Newton methods are declared “converged” when a norm of the nonlinear residual
is below a given tolerance, i.e. ‖H(x)‖ < htol. However, for coupled systems, each equation
may be expressed in a different scale (or units). As a result, even when a Newton iteration
x is far away from the solution, some equations may have very “small” residuals compared
with others. Hence, the choice of convergence criteria becomes very important, in that it must
measure convergence of all equations, irrespective of whether the units result in large or small
residuals. We employ a scaled root-mean-squared norm in measuring convergence,

‖H(x)‖ =

(

1

4N
‖DH(x)‖2

2

)1/2

, (16)
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equation at that spatial location, effectively re-normalizing all of the equations to remove unit
discrepancies. To this end, we choose these scaling values as
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1, Equations (1), (6), and (9)
rn−1, Equation (2)

En−1
m ρn−1, Equation (3)

m, Equation (4), System I
ρn−1, Equation (4), Systems II and III
En−1

m , Equation (7)
pn−1/ρn−1, Equation (8)(sound speed)

. (17)

Finally, unlike standard nonlinear systems of equations, the systems I, II and III involve
variables with implicit positivity constraints, i.e. density and energy must be strictly positive.
For astrophysical problems, the values of these variables can vary by orders of magnitude
throughout the spatial domain. As a result, small errors due to inexact solver tolerances or
even floating-point precision can result in violations of constraints when solution values get
small. However, the standard Newton-Krylov algorithm does not account for constraints on the
variables. We employ a novel transformation to logarithmically rescale these sensitive variables
for use within the Newton solver. For example, instead of using values for the density ρ, we
use ρ̃ = log(ρ) in the Newton solver and unknown vector x. This transformation adjusts the
nonlinear functional so that it depends on the nicely scaled ρ̃ instead of ρ. The Newton updates



are performed on the new unconstrained variable, ρ̃n(j+1) = ρ̃n(j) +λsj+1, which cannot result in
constraint violations in the density ρ = exp(ρ̃). We use such scalings in System I on the variables
{ρ, T, r}, and in Systems II and III on the variables {ρ, T,m}. This type of transformation
increases the nonlinearity of the functional H(x) on the solver arguments (e.g. ρ̃), which in
practice results in approximately one additional Newton iteration per step.

4. Software

Our implementation of the nonlinear solver portion of the simulation code uses the SciDAC
TOPS solver package, KINSOL from the SUNDIALS suite [20, 21]. SUNDIALS is a C
language package written with the goal of easily being included into existing physics codes.
The implementation of Newton-Krylov methods within KINSOL is data structure neutral, in
that the implementation does not depend on exactly what types of data structures the user
code has for variables and equations. We note that robust implementations of NK methods are
also available in the TOPS C++ package, Trilinos [22], and the TOPS C package, PETSc [23].
The physics routines in our code, RH1D, are written in F95 to achieve good performance. The
core of the physics is contained in routines to evaluate the nonlinear equations. The code to
accomplish the colored finite-difference approximation of the Jacobian is also written in F95 to
obtain peak efficiency as are all vector operations needed to implement the vector operations
needed by SUNDIALS.

5. Numerical Results

In this section we show results of applying the implicit solution method to two analytic solution
problems and a proto-neutron star cooling problem.

5.1. Analytic Solution Testing
The analytic tests we performed consisted of shock tube problems, blast wave problems, and
hydrostatic equilibrium problems. We lack space to recount these tests in full detail here, but
present highlights of the shock tube and blast wave. Our first reference problem is the Sod shock
tube [24]. The numerical performance of the three hydrodynamic discretizations, described in
Section 2, on this problem are shown in Figures 1-3, along with the analytical reference solutions
(solid lines). In these tests the time step was set by choosing a CFL factor of 0.5 and using
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Figure 1. The Sod shock tube for the
implicit Lagrangean scheme, I.
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Figure 2. The Sod shock tube test problem
for the implicit staggered mesh scheme, II.

θ = 1 for the Lagrangean scheme and θ = 0.55 for the Eulerian schemes. The computational
domain was discretized into N = 100 zones. The full details of the problem setup are described
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Figure 3. The Sod shock tube test problem
for the implicit FCT scheme, III.
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in [25, 10]. Our tests indicate that the implicit algorithms yield comparable numerical results to
each other, and to comparable explicit algorithms (see [13, 12, 25] for comparison). Increasing
resolution in these tests (Fig. 4) shows that the methods are converging as expected. We also
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Figure 5. The analytic and implicit Lagrangean numerical solutions of the Sedov-Taylor
problem. Radius is scaled by the analytic shock radius, and variables are scaled relative to
the values at the shock front.

present results from tests on the Sedov-Taylor blast wave problem. Results for the implicit
Lagrangean algorithm are shown in Fig. 5. This problem is particularly challenging to the
nonlinear solver because the blast-wave test creates an extremely dynamic set of conditions. The
initial conditions for this test are described in [10] and are chosen to create a problem where the
range of variables across the computational domain varies by eight orders of magnitude. The
ensuing blast wave sweeps up material into a thin shell with a very strong shock discontinuity in
all hydrodynamic variables. These physical discontinuities trigger limiters in the hydrodynamic
algorithm, which in turn introduce mathematical discontinuities in the Jacobian of the nonlinear
system. When a Lagrangean scheme is utilized to model this problem, the zones which follow
the fluid are swept up by the blast wave resulting in few zones in the evacuated region near the
origin and many zones near the shock front where physical quantities vary most rapidly. The
results of this test are comparable to those of other schemes [25].



5.2. Proto-Neutron Star Cooling Test
In order to demonstrate the applicability of this algorithm to core collapse supernovae and
proto-neutron star cooling problems, we have applied the code to a simplified problem that
captures the hydrodynamic and radiative behavior of a collapsed stellar core while employing
simplified microphysics. The proto-neutron star is constructed to be hot, initially static, and
of approximately 1.4 solar masses that is heavily supported by radiation pressure. For the
purposes of constructing initial data, the neutrino-radiation distribution is assumed to be static.
The multi-group opacity of the material is set to mimic the opacity of that in a more realistic
model, while the equation of state is taken to be an ideal gas for the sake of simplicity. The
central density of the star is taken to be ρc = 5×1014g/cm3. The initial distribution of radiation
is chosen so that it contributes approximately one half of the pressure support in the center of
the star, while diminishing radially outward from the center. This configuration yields a central
temperature of approximately 10 MeV , in agreement with more realistic models of a hot proto-
neutron star core taken from supernova studies. The cooling time scale for this problem is set
by the opacity and density of the stellar material, which for these problem parameters results
in a time scale of several seconds.

We evolve this model in an operator-split fashion through first applying our implicit
hydrodynamics algorithm, followed by an implicit multi-group radiation transport algorithm.
For comparison, an explicit hydrodynamic CFL restriction would yield a time step of
approximately ∆t ≈ 2.5 × 10−8s, hence requiring O(109) time steps and rendering even this
spherically symmetric problem intractable. In contrast, the implicit algorithm can take a much
larger time step since there are no fast-moving shocks or other short time scale phenomena of
interest involved in the problem. We utilized the implicit Lagrangean algorithm I to evolve the
problem with a CFL factor of 103 (i.e. ∆t ≈ 2.5 × 10−5s), with the results shown in Figs. 6-7.
After initial transient behavior, the initially static configuration should gradually contract as
the neutrino-radiation contribution to the pressure is lost as the neutrinos diffuse outward from
the core. This is indeed seen in Figure 6. The neutrino luminosity as a function of time is shown

Time (sec)

Figure 6. Trajectories of constant-mass
contours showing gradual contraction.

Time (sec)

Figure 7. Luminosity of neutrinos in units
of foes/s (1 foe = 1051 ergs).

in Fig. 7, which correctly decays over the long cooling time scale as the neutrinos gradually
diffuse from the core.

6. Conclusions

We have been able to develop a strategy that allows us to utilize NK methods to achieve an
implicit solution to a variety of different Lagrangean and Eulerian hydrodynamic simulations.
The solution utilizes a finite-difference scheme to acheive a quasi-smooth approximation of the



Jacobian and employs a novel transformation to account for the large dynamic range of physical
variables. The use of these methods allows us for the first time to visit multiple timescale
problems that could not possibly be attacked via explicit schemes.
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